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ABSTRACT

We calculate the mean power spectrum of all galaxies using published power

spectra of galaxies and clusters of galaxies. On small scales we use the power

spectrum derived from the 2-dimensional distribution of APM galaxies, since this

sample is not influenced by redshift distortions and is the largest and deepest

sample of galaxies available. On large scales we use power spectra derived from

3-dimensional data for various galaxy and cluster samples which are reduced to

real space and in amplitude to the power spectrum of APM galaxies. We find that

available data indicate the presence of two different populations in the nearby

Universe. Clusters of galaxies sample a relatively large region in the Universe

where rich, medium and poor superclusters are well represented. Their mean

power spectrum has a spike at wavenumber k = 0.05 ± 0.01 h Mpc−1, followed

by an approximate power-law spectrum of index n ≈ −1.9 towards small scales.

Some galaxy surveys (APM 3-D, IRAS QDOT, and SSRS+CfA2 130 Mpc) have

similar spectra. The power spectrum found from LCRS and IRAS 1.2 Jy surveys

is flatter around the maximum, which may represent regions of the Universe

with medium-rich and poor superclusters. Differences in power spectra for these

populations may partly be due to the survey geometries of the datasets in question

and/or to features of the original data analysis.
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1. Introduction

The power spectrum of matter is one of the most important statistics to describe the

large-scale structure of the Universe. If the distribution of density inhomogeneities is Gaus-

sian then the power spectrum characterizes the distribution of matter (in a statistical sense)

completely. During the last decade considerable efforts have been devoted to determining

this function empirically from the distribution of galaxies and clusters of galaxies. These

studies have shown that on small scales the power spectrum in real space can be satisfacto-

rily expressed by a power law with an index somewhere between −2 and −1.5. On larger

scales the spectrum turns over reaching a maximum on scales of 100 – 150 h−1 Mpc (we use

a Hubble constant of 100 h km s−1 Mpc−1).

The exact location of the maximum, its amplitude and shape are not well determined yet.

The deep pencil-beam redshift survey of Broadhurst et al. (1990) indicates the presence of a

sharp spike at a scale of l = 128 h−1 Mpc or wavenumber k = 2π/l = 0.05 h Mpc−1. Power

spectra of Abell-ACO clusters of galaxies (Einasto et al. 1997a, hereafter E97a, Retzlaff et

al. 1998, hereafter R98), and APM clusters (Tadros et al. 1998, T98) also indicate a rapid

turnover from a spectrum with negative slope on galactic scales to a spectrum with positive

slope; the turnover occurs at a high amplitude on a scale similar to the scale of the spike

found by Broadhurst et al. . But not all power spectra obtained from galaxy surveys support

this picture. Some data show a much flatter spectrum near the maximum: the 3-D spectrum

analysis of the Las Campanas Redshift Survey (LCRS; Lin et al. 1996, hereafter LCRS3d),

and the IRAS surveys discussed by Tadros and Efstathiou (1995, hereafter TE95).

Our main goal is to determine the mean matter power spectrum using all available

data. This will be done in three steps. First, we derive the mean power spectrum of

galaxies that best agrees with available observations and determine its main parameters

(present Paper). By “the mean power spectrum of galaxies” we understand the spectrum of

a population which includes all galaxies in real space in a large volume (fair sample). Second,

we investigate the biasing phenomenon and develop a method to reduce the galaxy power

spectrum to matter (Einasto et al. 1999a, Paper II). The method is based on the assumption

that the structure evolution in the Universe is due to gravity; in this case galaxy formation

is essentially a threshold process. We find a relation between the biasing parameter and the

fraction of mass in clustered objects (galaxies). We use numerical simulations to follow the

flow of matter from low-density to high-density regions. In these simulations, we identify

the current epoch by comparing the σ8 parameter of the spectrum with its observed value.

Finally, in the third step we determine the power spectrum of matter in the linear regime and

compare it with different model predictions (Einasto et al. 1999b, Paper III). This approach

is similar to Peacock & Dodds (1994) but, in addition, we also determine the primordial
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matter power spectrum.

The present paper is organized as follows. In Section 2, we describe the power spectra

we shall use in our analysis. In Section 3, we discuss why different catalogs give rise to

different power spectra. In Section 4, we derive the mean power spectrum by combining

the information from different catalogs, and determine the parameters that define the power

spectrum empirically such as its slope, amplitude, and the shape parameter. In Section 5 we

check this spectrum for consistency using recent determinations of the correlation function

for various galaxy and cluster samples. Finally, we draw our main conclusions.

2. Power spectra from galaxy and cluster data

In this article, our goal is to derive the mean power spectrum of all galaxies over a

wide range of scales. Our main assumption is that there exists one single power spectrum

that characterizes the distribution of a general population of all galaxies (including giant

and dwarf galaxies, and galaxies of all morphological types) in a large volume (fair sample

of the Universe). Real galaxy populations are subsamples of this general galaxy population,

selected in a subvolume and in certain limited luminosity and/or morphological type intervals

of the fair sample. Our practical task is to reduce power spectra determined from limited

galaxy populations to the fair sample. The mean power spectrum shall be determined in or

reduced to real space.

We use the following published power spectra: the SSRS+CfA2 130 Mpc/h volume-

limited survey for MB < −20.3 + 5 log h by da Costa et al. (1994, hereafter dC94), the

Stromlo-APM “1–in–20” redshift survey of APM galaxies (Tadros and Efstathiou 1996, here-

after TE96), the power spectrum analysis of the Las Campanas Redshift Survey (3-D spectral

analysis by LCRS3d, and 2-D analysis by Landy et al. (1996), hereafter LCRS2d), and two

IRAS surveys, the 1.2 Jy survey and the “1–in–6” QDOT survey (Saunders, Rowan-Robinson

& Lawrence 1992), discussed by TE95, and by Peacock (1997, hereafter P97). For comparison

we use power spectra of fainter galaxies: the CfA redshift survey (Vogeley et al. 1992, Park

et al. 1994), the SSRS+CfA2 101 Mpc/h volume-limited survey for MB < −19.7+5 log h by

dC94; and power spectra found by Gramann & Einasto (1992, hereafter GE92) for galaxies

in the the Local, Coma and Perseus superclusters. When this study was finished we received

a preprint of the power spectrum analysis of the Durham/UKST 1 in 3 Galaxy Redshift Sur-

vey by Hoyle et al. (1998). The power spectrum found for this survey is very similar to the

spectrum of the Stromlo-APM survey by TE96, which lies close to our mean power spectrum

PHD(k) (see below). This provides an important confirmation to one of our conclusions that

power spectra of galaxy samples which cover a large volume are close to power spectra of
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cluster samples, thus these samples can be considered as fair samples of the Universe.

In addition, we use results obtained from the APM two-dimensional galaxy distribu-

tion (Maddox et al. 1996 and references therein). This galaxy catalog is not influenced by

redshift distortions (Kaiser 1987, Gramann et al. 1993) and, therefore, is of special value

to determine the power spectrum in real space. The problem consists in finding the full

three-dimensional power spectrum from two-dimensional data. Recently, Peacock (P97) and

Gaztañaga & Baugh (1998, GB98) elaborated a procedure to use the APM Galaxy Survey.

Their results showed a very good mutual agreement; the shapes of spectra are almost iden-

tical, but amplitudes are slightly different. We include the mean of these two spectra in our

analysis.

The power spectra of Abell-ACO clusters (Abell 1958, Abell, Corwin and Olowin 1989)

were determined by E97a and R98; for APM clusters (Dalton et al. 1997 and references

therein) by T98. The power spectra of clusters are similar in shape to those of galaxies (in

the range of scales not distorted by peculiar velocities) except that the cluster power spectra

are enhanced in amplitude:

Pcl(k) = b2
clPgal(k), (1)

where k is the wavenumber expressed in units of h Mpc−1, and bcl is the bias factor of clusters

relative to galaxies. We shall investigate the possible error of this reduction below.

Power spectra determined from galaxy and cluster surveys are plotted in Figure 1. We

use the normalization of the power spectrum

P (k) = 2π2k−3∆2(k) , (2)

where ∆2(k) is the dimensionless power spectrum (see Peacock & Dodds 1994).

An inspection of our Figure 1 (and a similar Figure by Vogeley (1998)) indicates that,

while different spectra obtained from different surveys agree with each other in the power law

behavior on small scales, the shape and location of the maximum is not uniquely determined.

The spectra of clusters and APM galaxies (TE96) have a well-determined sharp maximum,

whereas IRAS and LCRS galaxies yield a low-amplitude maximum; cluster samples indicate

a rapid decline in amplitude for k ≤ 0.05 h Mpc−1 while most galaxy samples show a

much more modest decrease. The position of the maximum for APM clusters lies at k ≈

0.03 h Mpc−1, for Abell-ACO clusters and APM 3-D galaxies at k ≈ 0.05 h Mpc−1, and for

LCRS galaxies at k ≈ 0.06 h Mpc−1.
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Fig. 1.— Observed power spectra of galaxies and clusters of galaxies. ACO-E and ACO-R

are spectra for Abell-ACO clusters as derived by E97 and R98; APM-T is the spectrum

of APM clusters according to TE98; APM-gal.3D and APM-gal.2D are spectra of APM

galaxies found from 3-D and 2-D data by TE96 and by P97 and GB98, respectively; CfA2

is the spectrum of the SSRS+CfA2 130 Mpc/h sample by dC94, LCRS is the spectrum of

the LCRS according to LCRS3d; IRAS-P and IRAS-TE are spectra of IRAS galaxies found

by P97 and TE95.
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3. Analysis of observed power spectra

In the previous Section we pointed out the discrepancies between the power spectra

obtained from different galaxy and cluster surveys. In this Section we intend to clarify the

source of these discrepancies and to analyze which spectra correspond better to the actual

power spectrum of all galaxies (for a fair sample of the Universe).

3.1. Spectra of galaxies in high- and low-density regions

A striking feature in Figure 1 is the difference between the power spectrum of IRAS

galaxies (as reduced by TE95) and that of Abell-ACO clusters. It is well known that IRAS
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galaxies are under-represented in high-density regions. To understand the origin of this

discrepancy and its relation to the type of galaxy in the survey, we have performed numerical

N-body simulations. Since spatial resolution was crucial, we performed a 2-D analysis. We

used a double-power law initial power spectrum, which is a simple approximation of observed

spectra of galaxies and clusters of galaxies with a spike at the maximum (Frisch et al. 1995)

P (k) =











Akn, k ≤ k0;

Akn
0 (k/k0)

m, k > k0,

(3)

where n is the power index on large scales, m is the power index on small scales and is

negative, and k0 is the transition wavenumber. In our 2-D simulations we used indices n = 2

and m = −1; in the 3-D case these indices correspond to n = 1 and m = −2 on large and

small scales, respectively. The turnover scale was taken to be 1/4 of the simulation box size.

We used a box size of L = 512 h−1 Mpc. The present epoch was identified using an rms

density dispersion of σ1 = 4 on a scale of 1 h−1 Mpc, which corresponds to a variance of

approximately σ8 = 0.9 on a scale of 8 h−1 Mpc (Einasto et al. 1994a, hereafter E94). We

use a critical density universe, and express densities ̺ in units of the critical (mean) density.

A top-hat smoothing over 1 h−1 Mpc is used to determine the density field. This procedure

reproduces the distribution of dark matter as accurately as possible. Dark matter forms

halos around galaxies and groups with a characteristic scale of ∼ 1 h−1 Mpc (E94).

A density value was assigned to each particle by interpolating the density field at the

particle location. We assume that particles in the simulation belong to different populations

according to their environment, i.e. that galaxy samples of various environment, morphology

and luminosity can be approximated by particles in numerical simulations chosen in certain

threshold density intervals. We shall discuss this assumption and the relation between real

and simulated galaxies in more detail in Paper II. We call all particles with low density values

(̺ < ̺0) void particles. The remaining particles are clustered and form systems of various

richness; we call these clustered particles galaxies, actually they represent dark matter in

galaxies and galaxy systems. Particles with very high density values (̺ ≥ ̺cl) belong to

clusters or groups, and particles with intermediate density values (̺0 ≤ ̺ < ̺cl) shall be

called field galaxies. Here ̺0 and ̺cl are threshold densities which separate void particles

from galaxies, and field galaxies from cluster galaxies, respectively.

Figure 2 shows power spectra found for this simulation. Here we have used threshold

densities ̺0 = 1 and ̺cl = 5. In the present paper these values serve as illustrations;

their exact values can be determined using various tests (clustering properties as applied

by E94, or hydrodynamical simulations as in Cen and Ostriker 1992, 1998). Obviously, the

power spectrum of all galaxies (̺ ≥ 1) is similar to the matter power spectrum, but has a
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Fig. 2.— Power spectra of simulated galaxies. The solid bold line shows the spectrum derived

for all test particles (the matter power spectrum); various dashed and dotted lines give the

power spectrum of all galaxies, clustered galaxies in high-density regions, and galaxies in

the intermediate density regions (simulated field galaxies). The sample Field+.0 consist of

galaxies between threshold densities 1 ≤ ̺ < 5 only; samples Field+.1 and Field+.5 contain

also 10 % and 50 % of galaxies selected randomly from cluster galaxies with ̺ ≥ 5.
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higher amplitude. The power spectrum of field galaxies in the intermediate density range

(1 ≤ ̺ < 5) has a lower amplitude than that of the sample of all galaxies; it is even lower

than the amplitude of the matter power spectrum. Furthermore, the shape of the spectrum

is different as well: the maximum of the spectrum is flatter, and the power index on small

scales is lower.

The population of all clustered particles (i.e. galaxies) differs from the whole mass

population in a simple way – it does not include non-clustered particles in low-density regions

(i.e. the void population). Power spectra are defined by the density contrast, which leads to

the formula

Pm(k) = F 2
c Pc(k), (4)

where Pm(k) and Pc(k) are power spectra of mass and clustered particles, respectively, and

Fc is the fraction of matter in clustered particles (galaxies). The formula is exact if the

distribution of matter in low-density regions (voids) is homogeneous (Paper II). In practice it

can be used for a wide range of threshold densities ̺0 to divide the matter into low- and high-
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density regions. The form of the power spectrum of clustered particles remains similar to that

of all particles, only its amplitude has changed according to eqn. (4). Luminous galaxies

are more clustered than faint ones; thus, varying the threshold density, one can simulate

galaxy samples of different absolute magnitude limit, and galaxies in clusters or groups.

Thus this formula can be used to reduce power spectra of galaxies of various luminosity to

the spectrum of all galaxies, and the spectrum of all galaxies to that of all matter. We shall

discuss possible errors of this reduction in Section 4.7 below.

The shape of the power spectrum is conserved in the case when only particles or galaxies

in low-density regions are excluded by a certain threshold density or luminosity limit. If

samples of particles or galaxies are not complete in high-density (luminous galaxy) regions

then the shape of the power spectrum is not conserved (see the next subsection). To simulate

qualitatively different catalogs we chose galaxies in low- and medium-density regions as

representatives of IRAS galaxies, or as galaxies in poor superclusters (Einasto et al. 1997b,

1997c, hereafter E97b, E97c). In contrast to galaxies in high-density regions, the power

spectrum of galaxies in intermediate density regions is not related to the matter power

spectrum in a simple way. Thus, it is not easy to reduce the power spectra of galaxies in

intermediate density regions to all galaxies or to all matter distribution. But it is clear that

a population, with a more homogeneous distribution than that of all galaxies, has a power

spectrum which lies between the spectrum of a homogeneous population (a flat spectrum of

low amplitude) and the spectrum of all clustered particles.

The main conclusions obtained from our simulation are the following. Exclusion of dark

matter particles or galaxies from low-density regions raises only the amplitude of the power

spectrum in real space without changing its shape, whereas the exclusion of galaxies from

high-density regions decreases the amplitude and changes the shape of the power spectrum.

In the first case we can reduce data to form a mean power spectrum characteristic for

all galaxies using eqn. (4); in the second case the shape of the power spectrum is not

conserved and the reduction of the power spectrum is complicated, thus it is better to

consider the medium-density population and its power spectrum separately. These results are

based on the assumption that galaxy samples can be approximated by particles in numerical

simulations chosen in certain threshold density intervals (see Section 4.7 and Paper II for a

detailed analysis of this assumption).

3.2. The influence of superclusters on IRAS data

TE95 analyzed the power spectra of two IRAS surveys, the 1.2 Jy survey and the “1–in–

6” QDOT survey. They find that the spectrum of the QDOT survey has a higher amplitude,
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and, if galaxies of the Hercules supercluster are excluded, then both samples of IRAS galaxies

yield a similar power spectrum with a rather low amplitude, flat maximum.

We can consider intermediate-density (field) galaxies as representing IRAS galaxies.

Figure 2 shows that, if we exclude all galaxies in high-density regions from our sample (this

sample is marked Field+.0 in Figure 2), then the power spectrum of this intermediate-density

population has an amplitude near the maximum which is lower, by almost a factor of 10,

than the amplitude of the spectrum of all galaxies. The shape of this simulated field galaxy

spectrum is also different: the maximum is much flatter. Actually IRAS galaxies are not

completely absent in clusters, they are only under-represented. To simulate this behavior

we have formed a second simulated population of field galaxies which includes all galaxies of

the previous field galaxy sample, and a fraction (10 %) of cluster galaxies chosen randomly.

The corresponding mean power spectrum is shown in Figure 2 as Field+.1, it is the average

of 4 sub-volumes. Its amplitude is higher than for the previous sample, nevertheless it lies

below the simulated power spectrum of all galaxies. By increasing the fraction of galaxies in

high-density regions to 50 % (sample Field+.5) the difference between the simulated sample

of field and normal galaxies can be reduced further. The latter spectrum is close to the

spectrum of all matter, but it has a flatter maximum.

This simple test explains qualitatively the difference observed between the power spec-

trum of IRAS and normal galaxies with the deficit of galaxies in high-density regions (in

clusters and rich superclusters) in the former sample. It is rather difficult to calculate the

correction factor to reduce such a power spectrum to the spectrum of normal galaxies. The

correction factor depends on the threshold density to separate field galaxies from cluster

galaxies, and on the fraction of cluster galaxies in the IRAS sample; both parameters are

not known. For this reason, in the following analysis we consider the power spectrum of IRAS

galaxies derived by TE95 as a representative for medium-density regions in the Universe.

3.3. Distribution of LCRS galaxies

The power spectrum of LCRS galaxies, according to LCRS3d, is similar to that of IRAS

1.2 Jy galaxies. It lies below the power spectrum of the APM 3-D survey of galaxies and

that of the SSRS+CfA2 sample. As we have done before, we shall compare the distribution

of LCRS galaxies with the distribution of superclusters. Since the details of this comparison

shall be published elsewhere (Einasto et al. 1999c, hereafter E99c), here we briefly summarize

the main conclusions.

As demonstrated by Einasto et al. (1994b, 1997d, hereafter EETDA and E97d, respec-
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tively), very rich superclusters of galaxies form a quasi-regular network with a characteristic

scale of 120 h−1 Mpc. As shown by E99c, the LCRS slices intersect the supercluster-void

network basically in between very rich superclusters. Only the Horologium-Reticulum su-

percluster crosses one of the southern strips at α = 4h and cz = 20, 000 km/s; the −39◦

strip touches also the Sculptor supercluster at 23h 35m and cz = 33, 000 km/s. The rest

of high-density regions observed in LCRS coincide with clusters located in poor or medium-

rich superclusters of the catalog by E97d. Thus the most of the LCRS strips only cross

medium-density regions in the Universe.

The correlation function of clusters located in very rich superclusters oscillates with

rather high amplitude; an oscillating correlation function corresponds to a power spectrum

with a sharp turnover near the maximum (E97b, E97c). The correlation function of clusters

of galaxies located in poor superclusters has a lower amplitude on large scales. The power

spectrum as Fourier transformation has a flatter maximum of lower amplitude. These dif-

ferences between spectra resemble those described in Section 3.1. Thus the cosmography of

LCRS strips suggests that near the maximum the power spectrum of LCRS galaxies should

lie below the power spectrum of a sample in which both rich and poor superclusters are

represented. In fact, the actual power spectrum of LCRS galaxies has a lower amplitude on

large scales. For this reason we shall use the LCRS power spectrum as a representative of

samples which include poor and medium-rich superclusters.

On the other hand, it is possible that the low amplitude of the power spectrum is due

to the very broad window function in the Fourier domain, caused by the narrowness of the

LCRS survey in the declination direction (see Figure 3 of LCRS3d). The 2-D power spectrum

of LCRS as derived by LCRS2d has excess power on 100 h−1 Mpc scale. LCRS2d argue that

a 2-D analysis is more sensitive to the structure on large scales than the full 3-D analysis.

Then the low amplitude of the spectrum by LCRS3d could be caused by an incomplete

deprojection of the 3-D power spectrum. At the present stage, we can not conclude what

of the two possibilities, the different large-scale environment or problems in data analysis, is

more relevant to explain the discrepancy in the power spectrum. A more detailed numerical

study would be required.

3.4. The distribution of APM and ACO clusters of galaxies

Figure 1 shows that the maxima of the power spectra found for APM and Abell-ACO

clusters of galaxies have similar amplitudes to within a factor of 1.5. However, for APM

clusters the maximum occurs on larger scales. In this Section we try to clarify the reason for

this difference. A catalog of APM clusters of galaxies is now published (Dalton et al. 1997).
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Thus a direct comparison of the distribution of both cluster samples is possible. A detailed

comparison shall be given by E99c.

The main difference between the two cluster samples is the volume they cover. The

APM cluster sample is located only in the southern Galactic hemisphere, and even there it

covers a much smaller area on the sky than the Abell-ACO sample. For this reason the APM

cluster sample contains only a few very rich superclusters from the catalogs by EETDA and

E97d, (the Pisces-Cetus, Horologium-Reticulum and Sculptor superclusters), whereas the

Abell-ACO sample contains 25 very rich superclusters (E97d). These three superclusters

surround one big void – the Sculptor void; in contrast, the Abell-ACO catalog contains 16

voids cataloged by EETDA and surrounded by rich superclusters. Since the Abell-ACO

cluster sample covers a much larger volume in space than the APM sample (about 4 times)

we can assume that the power spectrum found for the Abell-ACO clusters represents a

larger sample; the power spectrum of the APM cluster sample can be considered as a local

deviation. In the next Section we discuss this deviation in more detail.

4. Mean galaxy power spectrum

It is our aim to determine the mean power spectrum of all galaxies in the nearby

Universe. The previous analysis has shown that discrepancies exist between power spectra

derived from various catalogs due to differences in the spatial distribution of objects. On the

other hand, some differences may be due to differences in the data analysis technique. These

are evident in the power spectra of IRAS samples as discussed above, they may be present in

the spectra of LCRS galaxies. A further problem is the power spectrum reconstructed from

the 2-D distribution of APM galaxies which has a much shallower turnover than the directly

measured 3-D power spectrum (see Figure 1). The analysis of power spectra of simulated

samples has shown that we have insufficient information to correct for all imperfections of

the data analysis techniques.

For these reasons it is not realistic to determine only one mean power spectrum in

the hope that it characterizes the distribution of all galaxies in the whole nearby Universe.

Instead, we shall determine two mean power spectra, separately for two sets of samples

(populations). In this way we try to quantify possible differences in the distribution of

galaxies and in our ignorance of uncertainties in various data analysis techniques.

The first mean power spectrum was obtained from power spectra found for cluster sam-

ples and the APM 3-D, IRAS QDOT, and SSRS+CfA2 130 Mpc galaxy samples. Cluster

samples cover a large volume where rich superclusters are present. We consider this popula-



– 13 –

tion as characteristic for high-density (HD) regions and for convenience we call it the “HD

population”.

The second mean power spectrum was derived from spectra of the LCRS sample, the

IRAS galaxy sample as discussed by TE95, and the APM 2-D sample. LCRS and IRAS cat-

alogs either sample regions of the Universe characteristic for medium-rich superclusters or

samples of galaxies where high-density regions are under-represented. We consider this pop-

ulation as characteristic for medium-density (MD) regions and call it the “MD population”.

Let us remark that the differences between both spectra could be due to the differences in

the populations but could also be partly an artifact of the data analysis. This could be so

in the case of the APM 2-D power spectrum. The true power spectrum lies probably in

between, and the uncertainty range can be understood as due to cosmic scatter (different

samples) and systematic errors.

4.1. Galaxy power spectrum on small scales

Observed power spectra are distorted by various effects. Coherent infall velocities to

central regions of clusters and superclusters increase the amplitude of the power spectrum on

all scales (Kaiser 1987). Another important effect is the relative bias caused by differences

in the spatial concentration of galaxies of different absolute magnitude and morphological

type to high-density regions. Luminous galaxies are mostly concentrated to central regions

of groups and to clusters of galaxies. These galaxies are similar to cluster galaxies discussed

above. Their power spectra are shifted to higher amplitudes; the shift is practically scale-

independent (see Figure 2, GE92, Park et al. 1994, Peacock & Dodds 1994, and a detailed

discussion in Paper II). On small scales 3-D galaxy spectra are distorted by peculiar velocities

(Gramann et al. 1993) due to the combined influence of bulk-motions and velocity dispersion

of galaxies in virialized clusters and groups.

Peacock and Dodds (1994) elaborated a technique to correct observed spectra for these

effects. Here we shall apply a different approach: we accept on small scales the APM galaxy

power spectrum calculated from the 2-D distribution of galaxies. The APM 2-D data is free

from redshift distortions. It also has some additional advantages: as it is based on a much

larger and deeper dataset, the cosmic variance is smaller than for all presently available 3-D

surveys; it contains absolutely faint galaxies, thus we may assume that the amplitude of this

spectrum corresponds to the amplitude of the spectrum of all galaxies.

GE92 investigated the dependence of the power spectrum on the absolute magnitude

limit M0 in volume limited samples in the Local, Coma and Perseus superclusters. These
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calculations show the presence of luminosity bias: if samples include only brighter galaxies

(M0 ≤ −18.75 + 5 log h) then their power spectra have a higher amplitude. Relative bias

factors (in respect to faint galaxies) for samples with luminosity limits M0 = −19.75+5 log h

and M0 = −20.25 + 5 log h are 1.31 and 1.52, respectively. This luminosity bias has been

studied since then with similar results (see dC94, Park et al. 1994, LCRS3d). On the

other hand, GE92 found that fainter galaxies have no luminosity bias, i.e. within sampling

errors power spectra have identical amplitudes, if the absolute magnitude limit M0 lies

within the interval −15 + 5 log h ≥ M0 > −18.75 + 5 log h. In other words, galaxy samples

with sufficiently faint absolute luminosity limits approach properties of a fair sample of the

Universe (which, by definiton, includes galaxies of all luminosities).

The APM 2-D sample is not a volume limited sample, but in the nearby volume it

includes absolutely faint galaxies, and the amplitude of the spectrum as restored by P97 and

GB98 should correspond to the sample of all galaxies. Thus we may assume that the APM

2-D sample has small or negligible absolute magnitude bias.

For these reasons we identify the power spectrum determined from de-projecting the

2-D APM data on small scales (k ≥ 0.1 h Mpc−1) with the mean galaxy power spectrum.

We use the mean of the power spectra by P97 and GB98; the error estimates are practically

identical, so we accepted the errors given by P97. On larger scales we cannot apply this

power spectrum since it deviates systematically from spectra found from 3-D data.

4.2. Galaxy power spectrum on large scales

The main problem in calculating the mean power spectrum on larger scales is the cor-

rection for relative bias and for redshift distortions.

Redshift distortions are due to the contraction of superclusters (bulk motions) and to

the velocity dispersion in virialized systems (“finger of God effect”). Bulk motions enhance

the amplitude of the power spectrum on all scales and do not change the shape of the spec-

trum. The influence of the velocity dispersion is large on small scales where it decreases the

amplitude of the spectrum. Numerical simulations by Gramann et al. (1993) and Suhho-

nenko & Gramann (1998) show that for realistic models the influence of velocity dispersions

to the shape of the spectrum is very small for wavenumbers k < 0.2 h Mpc−1. Therefore, in

the scales of interest we can ignore the effect of velocity dispersion. Relative bias and redshift

distortion due to bulk motions both influence only the amplitude of the power spectrum.

Their combined effect can be determined empirically from the comparison of amplitudes of

spectra. As reference we can use the undisturbed power spectrum of the 2-D sample near the
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wavenumber k ≈ 0.1 h Mpc−1. Figure 1 shows that the slope of power spectra of all cluster

samples is approximately the same around this scale. This observational evidence suggests

that the shapes of 3-D power spectra in this region are not distorted by redshift effects.

Using the difference in amplitude at this wavenumber, we arrive at the following relative

bias factors: brel = 1.30 for SSRS+CfA2 130 h−1 Mpc survey (dC94), 1.12 for the APM 3-D

survey (TE96), and 1.05 for the IRAS QDOT galaxy sample (P97). A high relative bias of

the SSRS+CfA2 130 h−1 Mpc sample is expected as it consists of only bright galaxies. The

difference in relative bias factors of this sample from the value found by GE92 for samples of

this absolute magnitude limit (1.52) can be considered as the uncertainty of the calibration

of the amplitude of the APM 2-D spectrum as characteristic for all galaxies. A low relative

bias for IRAS galaxies is also expected due to arguments discussed above.

For cluster samples we find bcl = 2.60 (E97a) and 2.43 (R98) for Abell-ACO cluster

power spectra; and bcl = 2.24 for the APM cluster spectrum by T98. The spatial density of

APM clusters of galaxies is higher than that of Abell-ACO clusters; this means that APM

clusters are defined at a lower threshold density; the power spectrum of such a sample must

have a lower amplitude for reasons discussed above.

We have determined the relative bias factors around the wavenumber k ≈ 0.1 h Mpc−1;

they are somewhat smaller than found by Peacock and Dodds (1994) for the whole scale

interval. In using the whole scale interval Peacock & Dodds smooth the differences in the

shape of power spectra of different populations. On the other hand, it is possible that the

zero point of the amplitude as found by Peacock & Dodds and GE92 is closer to the true

amplitude for the power spectrum for all galaxies. If this is the case then the amplitude

of our adopted spectrum may be overestimated by a factor of up to ≈ 1.15. This factor

characterizes the possible systematic error of the amplitude of our mean power spectrum.

Applying these bias factors we normalized the power spectra of all samples to the am-

plitude of the APM 2-D galaxy spectrum. The results are shown in Figure 3. The power

spectra were slightly smoothed and interpolated using a spline approximation for further

analysis.

4.3. Corrections applied to observed power spectra

Our aim is to find the mean power spectrum of a large sample of the Universe as

accurately as possible. In order to achieve this goal we applied a small correction to the

observed spectrum in one case and investigated the deviation from a power spectrum of a

larger sample in the other case.
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Fig. 3.— Left: Power spectra of galaxies and clusters of galaxies normalized to the amplitude

of the 2-D APM galaxy power spectrum. For clarity error bars are not indicated and spectra

are shown as smooth curves rather than discrete data points. Bold lines show spectra for

clusters data, and designations are as in Figure 1. The spectrum for APM clusters is shifted

on large scales (see text). Right: Mean power spectra derived from galaxy spectra only

(PHD1); from galaxy and original cluster data (PHD2); and from galaxy and cluster data

excluding APM cluster spectrum data on scale above the maximum (PHD). Random errors

of the mean power spectrum at k = 0.05 h Mpc−1 are 12 %, 18 %, and 12 %, respectively.

Galaxy power spectra are shown for samples CfA2 130 Mpc (dC94), IRAS-P (P97), and

APM 3-D (TE96). For comparison the APM galaxy spectrum derived from 2-D data is also

shown; it is accepted as the mean power spectrum PMD.
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The first case is the power spectrum of Abell-ACO clusters of galaxies. It was de-

termined by E97a from the cluster correlation function by Fourier transformation. This

method produces an artificial local minimum of the power spectrum near the wavenumber

of k ≈ 0.035 h Mpc−1. The correlation function is a Fourier transformation of the power

spectrum and vice versa if both statistics are determined in the whole space and do not have

random and systematic errors. Actually they are determined in a limited volume and may

have errors; this particular error is due to the double-conical volume where known clusters

are located. A correction to this effect was applied using spectra determined for simulated

clusters in N-body calculations where the true power spectrum is known (see Section 5).

Figure 2a shows that after this correction the shapes of spectra of Abell-ACO clusters as

determined by E97 and R98 are rather similar but not identical (see next section for a

discussion of differences between samples used by E97 and R98).
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The second case is the APM cluster power spectrum. The mutual separation of rich

superclusters in the APM cluster sample is anomalously large. This is well seen in respective

plots of clusters in E99c, and is reflected in the position of the secondary peak of the cor-

relation function (see Figure 5 below). Rich superclusters found for Abell-ACO clusters in

the same volume have also large separations. Large variations of separations of superclusters

are common; similar variations are also seen on void diameters (defined by surrounding su-

perclusters; see Table 5 of EETDA). The mean diameter of voids defined by all Abell-ACO

clusters is 91 ± 18 h−1 Mpc, and the largest deviations reach the 3σ level. To see how the

anomalously large separation of superclusters influences the power spectrum we shifted the

APM cluster spectrum on scales above the maximum towards shorter scales; the amount

of the shift was determined from the difference of mean separations of rich superclusters in

these catalogs. Figure 3 (left panel) shows that after this shift the power spectrum of APM

clusters lies close to the spectrum of Abell-ACO clusters; in other words, the difference in

power spectra of Abell-ACO and APM clusters on large scales is due to differences in the

mean separation of rich superclusters. To see the effect of this peculiarity we find two mean

power spectra, using the original data by T98, and ignoring the APM cluster power spectrum

on scales above the maximum; results for these mean power spectra are shown in Figure 3

(right panel).

4.4. Weights applied to determine the mean spectrum

After the reduction of power spectra of individual samples to the amplitude of the APM

2-D spectrum at k ≈ 0.1 h Mpc−1, the remaining differences are due to random errors, errors

of relative bias factors, cosmic scatter and/or problems in data sampling and reduction. In

order to avoid unphysical results (negative values of the spectrum) we assume that the error

distribution of the power spectrum is approximately lognormal. We calculate the weighted

mean of 3-D power spectra as follows:

log P (k) =

∑

log Pi(k)wi(k)
∑

wi(k)
(5)

where Pi(k) is the power spectrum of sample i, and wi(k) = w0i/σ
2
i (k) is the weight of the

sample at k; here w0i is the mean weight of sample i, and σi(k) is the rms error of log P (k)

of sample i.

For most samples we accepted original errors, i.e. we took w0i = 1. Only the weight of

the power spectrum of Abell-ACO cluster sample by E97 was adjusted. E97 determined the

power spectrum by Fourier transforming the correlation function, the error was calculated

from the error of the correlation function (E97b, E97c). The comparison with other spectra
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suggests that the error of the power spectrum by E97 is underestimated by a factor of ≈ 1.4.

Correcting the error of this sample we get the following relative weights of samples (in units

of the weight of the APM 3-D sample; in parentheses we give the relative errors of power

spectra near the maximum): 2.0 (20 %) and 1.0 (29 %) for Abell-ACO cluster samples by

E97a and R98, respectively; 1.5 (23 %) for APM clusters by T98; 1.0 (29 %) for APM 3-D

galaxy spectrum by TE96; 0.44 (48 %) for SSRS+CfA2 galaxy sample by dC94; and 0.88

(32 %) for the IRAS QDOT sample by P97. The mean relative error of P (k) averaged over all

wavenumbers is 11 %; local deviations from this mean error are small. The volume occupied

by Abell-ACO and APM cluster samples, used by E97, R98 and T98, relates approximately

as 4:1.5:1; the number of clusters used is 869, 417 and 364, respectively for E97, R98 and T98

samples. In case of cluster power spectra relative weights are proportional to the number of

clusters, avoiding double-counting Abell-ACO clusters used by E97 and R98.

We calculated the mean power spectrum for three sets of weights w0i. In the first set we

eliminated cluster samples (cluster weights were taken w0i = 0) and used only galaxy samples

with their original weights; this mean power spectrum is denoted PHD1 in Figure 3b. In the

second set we used the original power spectrum of APM clusters (with weights as described

above) (PHD2 in Figure 3b). The third set is similar to the second one, only on scales

larger than the maximum the APM cluster spectrum was ignored as it is distorted (PHD

in Figure 3b). The position of the maximum of the mean power spectrum for pure galaxy

samples is k = 0.04 h Mpc−1; if the APM cluster spectrum is used then the maximum of the

mean spectrum is also at k = 0.04 h Mpc−1. The amplitude of the mean power spectrum on

the largest scales varies within a factor of ≈ 1.2 for various sets; the highest amplitude has

the spectrum PHD1 based on galaxy samples only. All variations lie well within the formal

error corridor of the mean power spectrum. We see that the mean power spectrum is rather

stable, it does not depend critically on the presence or absence of a particular sample.

The Abell-ACO cluster sample covers the largest volume in space. The power spectrum

of APM clusters deviates on large scales with respect to the spectrum of a fair sample of

the Universe for reasons discussed above. The mean spectrum based on galaxy spectra is

obtained from samples covering a relatively small volume. Thus we adopt the power spectrum

derived with the third set as the mean power spectrum of all galaxies; it is shown by a solid

thick line in Figure 3, and is calculated for k ≥ 0.03 h Mpc−1, the range for which data

are available for all samples used here. For some samples, spectra are given for even larger

scales, but these data are not very accurate and are ignored here (on largest scales the power

spectrum is determined only by a few density waves; numerical simulations show that here

the amplitude is often exaggerated, see Figure 2). This mean power spectrum corresponds

to samples which include regions of all richness types, in particular very rich superclusters

of galaxies; we denote this power spectrum by subscript HD (for high-density).
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4.5. The mean power spectrum for medium-density regions

On large and medium scales power spectra of LCRS galaxies (estimated by LCRS3d)

and of IRAS samples (as analyzed by TE95) are close to the power spectrum determined

from APM 2-D galaxy data. The APM 2-D power spectrum is, however, much smoother and

has considerably smaller random errors than LCRS and IRAS spectra. Thus we shall use

the APM 2-D power spectrum in the k < 0.1 h Mpc−1 range as the characteristic spectrum

for the second population.

IRAS samples as reduced by TE95 represent samples of galaxies where the number of

galaxies in high-density regions is reduced. Strips of the LCRS survey essentially intersect

only poor and medium-rich superclusters. As noted in the introduction to this Section, we

refer to this population as “medium-rich” and denote the power spectrum with subscript

MD (for medium-density). This notion is for simplicity, since it is still not clear, why the

power spectrum, determined from APM 2-D data in the scale range around the maximum,

is different from the power spectrum found from APM 3-D data. The amplitude of the

power spectrum near the maximum is determined by the spatial distribution of very rich

superclusters. It is possible that in the projection, from three to two dimensions, part of the

information on the galaxy distribution is lost; in other words, the reduction of 2-D data to

three dimensions is imperfect. An assessment of this and other possibilities is beyond the

scope of this paper. We continue the discussion of differences between the power spectra of

two populations in Section 6 using the correlation function test.

4.6. Redshift and real space power spectra

The power spectrum found from APM 2-D data is given in real space by definition.

We have used this spectrum in case of PMD on all scales, and in case of PHD on medium

and small scales (k ≥ 0.1 h Mpc−1) – here both spectra are identical. On larger scales the

3-D power spectra used to find the mean spectrum for the HD population were originally

determined in redshift space. We have applied the correction due to bulk motions for all

observed spectra by shifting the observed spectra to match the APM spectrum. Thus our

mean power spectrum is reduced from redshift space to real space. Here the assumption

is that redshift distortions due to velocity dispersions within clusters and groups can be

ignored on scales of interest (k < 0.1 h Mpc−1). Numerical simulations of CDM models with

cosmological constant show that on these scales redshift distortions due to velocity dispersion

are small (see Fig. 2 of Gramann et al. 1993).

Figure 3 shows that the mean power spectrum, PHD(k), has a well-defined maximum
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at k0 = 0.050 h Mpc−1, an approximate power law towards smaller scales with power index

m ≈ −1.9, and a definite decline on scales larger than that of the maximum. The power

spectrum characteristic for medium-rich regions of the Universe, PMD(k), is identical to

the former spectrum over most scales, but has a flatter maximum of lower amplitude; the

maximal difference in the amplitude is a factor of 2. Toward very large scales the amplitudes

of both power spectra definitely decrease, the decrease being more rapid for the cluster data;

the accepted mean power spectrum PHD(k) is a compromise between cluster and galaxy

data.

4.7. Error analysis

The determination of the mean power spectra of all galaxies, found from observed power

spectra of galaxies and of clusters of galaxies, involves several steps of data reduction. Here

we analyze possible errors of these steps.

The main assumption in our analysis is that there exists a mean power spectrum char-

acteristic for a population which includes all galaxies in a sufficiently large volume (fair

sample). A fair sample is defined as a sample which is characteristic for all galaxies; thus,

if it exists at all, it must have a power spectrum. The practical questions is: do we have

any evidence that real galaxy samples approach properties of a fair sample in this respect?

GE92 noticed that power spectra of galaxy samples with different absolute magnitude limit

are similar in shape and have identical amplitudes, if the sample is complete to sufficiently

faint galaxies (M0 > −18.75 + 5 log h, see Section 4.1). The scatter of observed data points

of power spectra for these faint galaxy samples studied by GE92 is about 10 % (±0.05 in

log P ) which can be attributed to the cosmic scatter as the number of galaxies in samples

studied for this effect was small (from 200 to 1200). But notice that Park et al. (1994) have

found a luminosity bias for all subsamples studied (M0 ≤ −18.5 + 5 log h), thus the lower

luminosity limit of a fair sample is not yet fixed accurately.

The first step in the derivation of the mean power spectrum of galaxies is the reduction

of power spectra of different galaxy and cluster samples to the spectrum of all galaxies. Here

we assume that power spectra of different galaxy samples are similar in shape and differ

only in the overall amplitude of the spectrum. This assumption is justified by the empirical

evidence that power spectra of galaxy and cluster samples can be brought into coincidence

by adjusting amplitudes of power spectra (see Figure 1 and Vogeley 1998). The coincidence

is, however, not exact, and we have to estimate the corresponding error. This can be done

using numerical simulations of various galaxy samples.



– 21 –

In a random Gaussian density field clusters of galaxies and samples of galaxies of different

luminosity can be considered as samples of objects selected from the general density field

by different threshold density level. Such an analysis is done in Paper II; it shows that a

selection by threshold density changes the amplitude of the power spectrum (and of the

correlation function), but not its shape if samples are complete in high-density regions (see

also Kaiser 1984, GE92). Results of numerical simulation of galaxy samples, selected at

various threshold density levels, show, that the shape of the power spectrum in real space

is conserved for galaxy samples within a relative error of the order of 1 %, and in the

case of cluster samples within a relative error of ≈ 5 %, if averaged over the scale interval

0.01 < k ≤ 1 h Mpc−1(see Table 1 of Paper II), but only 2 %, if averaged over a scale

interval 0.01 < k ≤ 0.2 h Mpc−1, relevant for the present study (see Figure 2b of Paper II).

As random errors of observed power spectra values (due to the cosmic scatter and to the

Poisson noise) are of the order of 10 % and more (see errors shown in Figure 1), we conclude

that the error introduced to the shape of the power spectrum of all galaxies by a shift in

amplitude of power spectra of clusters and bright galaxies is negligible. The most serious

error of the shape of the power spectrum of clusters and bright galaxies is the enhancement

of the amplitude of the power spectrum on the largest scale. Such effect is observed in

real samples (power spectrum of the APM 3-D galaxy sample, Figure 3) and in numerical

simulations (the largest scale in model CDM6, Figure 4). For this reason we have ignored

observed data points of power spectra on these largest scales.

The next aspect of the data analysis is the reduction of observed power spectra from

redshift space to real space. On small scales, k ≥ 0.1 h Mpc−1, we have accepted the mean

power spectrum of galaxies on the basis of the 2-D distribution of galaxies of the APM survey,

which is given in real space by construction. On larger scales we have to make a distinction

between redshift distortions due to the contraction of superclusters (bulk motions) and to

peculiar motion of galaxies in virialized systems. The first effect changes the amplitude of the

power spectrum only, the second changes also the shape. Numerical simulations show that on

scales k ≤ 0.2 h Mpc−1 the effect of peculiar motions is small for galaxies and negligible for

clusters since cluster mean redshifts are used (Gramann et al. 1993, Suhhonenko & Gramann

1998). This is confirmed by direct observational data. GE92 removed peculiar motions of

galaxies in groups and clusters by a special procedure; they found the galaxy power spectrum

to have a power index n = −1.75 in the range 0.08 < k < 0.5 h Mpc−1. Within errors this

coincides in the overlapping range of scales with the power index found by GB98 for APM

galaxies, and for clusters of galaxies (E97a, R98, T97), n = −1.9. We conclude that the error

of the shape of the power spectrum in real space, introduced by this reduction procedure

using original spectrum data determined in the redshift space, is of the order ±0.1 in the

power index.
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The main error of the amplitude correction is related to the fixing of the amplitude of

the power spectrum of all galaxies in real space. We have adopted the amplitude found by

P97 and GB98 from the reconstruction of the 3-D power spectrum from 2-D distribution

of APM galaxies. To estimate the possible error of this normalization we have compared

relative bias factors used in this study with factors found by GE92 for the nearby galaxy

samples in the Local, Coma and Perseus superclusters, and by P97 for other samples. This

comparison suggests that the amplitude of our mean power spectrum can have an error of

up to 15 %. This normalization error is the largest possible systematic error of the power

spectrum of all galaxies.

4.8. Parameters of the mean galaxy power spectrum

Here we give parameters of the empirical galaxy power spectrum PHD(k) for samples

which include rich superclusters. We recall that by construction our power spectrum is

defined in real space. The spectrum can be specified by the following parameters: the

position of the maximum

k0 = 0.050 ± 0.005 h Mpc−1; (6)

the amplitude of the maximum

PHD(k0) = 2.30 ± 0.25 × 104 h−3 Mpc3; (7)

and the half-width of the power spectrum at the half-maximum level in the direction of

increasing wavenumbers k (Eisenstein et al. 1998)

HWHM = 0.19 ± 0.05 dex. (8)

(Note that the full-width cannot be estimated since the observed power spectrum has yet to

be determined for k ∼< 0.01 h Mpc−1).

Another power spectrum parameter is the power index on intermediate scales (k0 < k <

0.2 h Mpc−1), which we find to be m = −1.9 ± 0.1 for PHD(k).

The power spectrum PMD(k) (i.e., for samples with poor and medium-rich superclusters)

is characterized as follows: The maximum derived from APM 2-D data occurs at wavenumber

k0 = 0.040 h Mpc−1, and that derived for the LCRS at k0 = 0.063 h Mpc−1; thus, the mean

value is the same as for samples including rich superclusters. The mean amplitude of the

spectrum from APM 2-D and LCRS data is PMD(k0) = 1.19± 0.27× 104 h−3 Mpc3. Formal

errors are approximately the same as for samples which include rich superclusters. Since the

power spectrum for these samples is flatter, the half-width of the power spectrum on half-

maximum level is much larger: HWHM = 0.42±0.10 dex. The power index on intermediate
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scales is the same as for the previous case, only it holds for a smaller range in k-space (see

Figure 3).

Error estimates given above are determined from the mean errors of the power spectra

of individual samples used. These sampling errors are comparable to the possible systematic

error of the amplitude due to normalization, discussed above. The overall error of the

amplitude of the mean power spectrum of galaxies (sampling + systematic errors) is about

20 %.

The reason why there exist two populations of galaxies in the local Universe with dif-

ferent clustering properties and power spectra is not fully clear. The comparison of power

spectra and correlation functions of clusters of galaxies in superclusters of different richness

(E97b, E97c) hints at the possibility that we simply are dealing with regions of different

size. Very rich superclusters are rare; so, whereas larger samples include the rarer, richer

superclusters, in smaller samples only medium and poor superclusters are present. If this

assumption is correct, we can consider our Abell-ACO cluster sample as the closest to a

fair sample of the Universe. But this needs verification from much deeper and larger galaxy

samples.

Table 2 contains tabulated values of the mean galaxy power spectrum log Pgal(k), found

for samples including rich superclusters. The wavenumber k and the spectrum are given in

usual units as described above; to allow the use of the power spectrum to calculate Fourier

integrals data are given with a small step, ∆ log k = 0.02; ǫ is the error of the logarithm of

the power spectrum, calculated from errors of individual determinations of the spectrum; n

is the power index found for interval (i − 1) − i (i is the row number). We give also the

mean linear matter power spectrum, log Plin, found in Papers II and III of this series, and

its power index n; they are also found for the power spectrum characteristic for high-density

regions. Small waves of the linear power spectrum are due to Doppler oscillations of the

transfer function, used to calculate theoretical power spectra applied for the extrapolation

on small scales (for details see Paper III). The mean power spectrum for medium-density

regions, PMD(k), is accepted in accordance with P97 and GB98, and is not tabulated here.

5. The correlation function test

In this Section we shall use various determinations of the correlation function of galaxies

and clusters of galaxies to check the consistency of our power spectra. The correlation

function and the power spectrum are mutually related via Fourier transformation. In the

absence of random and systematic errors the observed correlation function should be identical
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to the Fourier transformation of the observed spectrum and vice versa, when known over

the full range of k and r. The actual situation is different. Both functions are measured in

a limited range of scales; and various selection effects influence the correlation function and

the power spectrum in different ways. For this reason the correlation function and the power

spectrum provide two complementary methods for characterizing the large-scale structure of

the Universe.

Of special interest is the correlation function for large separations, since it is very sensi-

tive to the shape of the power spectrum near its maximum. In this region differences between

various samples are more pronounced. Also, of particular interest is the correlation function

of clusters of galaxies in rich and very rich superclusters since its amplitude is larger (E97b,

E97c).

5.1. Simulated correlation functions

Let us first analyze the relation between the correlation function and the power spectrum

of matter and of clusters of galaxies in simulated rich superclusters. Our purpose is to

clarify how well high-density regions, in particular very rich superclusters, characterize the

distribution of matter in general. For this purpose we perform 3-D N-body simulations.

Table 1 summarizes the main parameters of our models which differ basically in the behavior

around the maximum of the spectrum. The “DPS” model is the double-power law model

with sharp transition, eqn. (3), with parameters: n = 1; m = −1.5; and k0 = 0.05 h Mpc−1.

The “DPP” model is similar to the previous one, but its power spectrum has an additional

peak of relative amplitude ≈ 1.7 near the maximum. The other two models are the standard

CDM model and a flat model with cosmological constant, designated as CDM1 and CDM2,

respectively. The length of the simulation box was taken to be L = 6λ0, where λ0 = 2π/k0;

for the above transition scale this gives L = 720 h−1 Mpc. Calculations were performed

with a PM code with 2563 cells and 1283 particles, the present epoch was identified by rms

density fluctuations within the simulation cell of size l = L/256 = 2.8 h−1 Mpc. The rms

amplitude of density perturbations of dark matter is characterized by the σ8 parameter; it

was calculated from the power spectrum of matter by integration (see Paper II).

Clusters of galaxies were identified with a tree code which picks up high-density clumps

of particles. Parameters of the neighborhood search were chosen so as to obtain a total of

2 × 104 clusters in each model. From this initial cluster sample a subsample was selected

choosing the Ncl ≈ 9300 most massive candidates (the mass is determined from the number

of particles included). This corresponds to the spatial density of Abell-ACO clusters of

n = 2.5 × 10−5 h−3 Mpc3 in this volume, taking into account the selection function of real
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clusters both in galactic latitude and distance (see E97b and E97d for details).

These simulations have a low spatial resolution. To check how sensitive the clustering

properties are to the chosen resolution, we calculated a new variant (CDM6, with much

higher resolution) for the standard CDM model. This model was calculated with a different

algorithm and different realization of the initial density field; it has a lower σ8 value, thus its

amplitude is lower. The lower mass limit of clusters is also different since the rate of cluster

formation depends on the amplitude of the power spectrum on large scales.

Matter power spectra derived from all test particles are shown in the upper panel of

Figure 4. As indicated by the σ8 value, the model CDM6 has a spectrum of lower amplitude.

In the present context the absolute normalization of the amplitude of the power spectrum is of

minor importance as we compare cluster correlation functions for the same model, calculated

directly from simulated cluster samples and indirectly from the Fourier transformation of the

matter power spectrum. On large scales the power spectrum of the CDM6 model is rising,

which is probably a numerical artifact (similar deviations occur if we extract from the whole

simulation box a smaller sub-volume and find the power spectrum there).

These spectra were used to calculate the correlation function of matter using the Fourier

transformation. As demonstrated already by Kaiser (1984), the correlation function of clus-

ters of galaxies has a higher amplitude than the correlation function of galaxies. The same

is true for power spectra. The analysis by E97b and E97c has shown that the amplitude

of the correlation functions (and of the power spectra) of clusters in very rich superclusters

Table 1: Simulation parameters

Model Number Number Lbox Ω0 ΩΛ h σ8 Ncl

of particles of cells (h−1 Mpc)

CDM1 1283 2563 720 1.0 0.0 0.5 0.57 9350

CDM2 1283 2563 720 0.2 0.8 0.5 0.79 9373

DPS 1283 2563 720 1.0 0.0 0.5 0.88 9339

DPP 1283 2563 720 1.0 0.0 0.5 0.79 9445

CDM6 2403 7203 720 1.0 0.0 0.5 0.46 9329
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Fig. 4.— Spectra and correlation functions of N-body models. Upper panel: matter spectra;

middle panel: correlation functions calculated from matter spectra by Fourier transformation

and enhanced in amplitude to simulate cluster correlation functions; lower panel: actual

correlation functions of model clusters in rich superclusters. Models are designated as in

Table 1.
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is larger than that for galaxies, by a factor of about 50, which corresponds to a relative

bias factor of 7. Thus, in order to find the expected correlation function of clusters in very

rich superclusters, we multiply the matter correlation functions of our models by this factor

(here we ignore the difference between the matter and galaxy power spectra and correlation

functions as this difference is small, see below). The resulting expected correlation functions

are plotted in the middle panel of Figure 4.

Using model cluster catalogs we constructed model superclusters applying a procedure

identical to the determination of real superclusters (EETDA, E97d). The correlation func-

tions of clusters of galaxies located in very rich superclusters with 8 or more members are

shown in the lower panel of Figure 4. We see that these correlation functions are rather

similar to expected correlation functions calculated from the distribution of all particles by

Fourier transforming the matter power spectra.

We conclude that simulated superclusters, in particular very rich superclusters, can be

used to describe the matter distribution of the whole model. A check with high-resolution

simulation CDM6 confirms results obtained with medium resolution. In all CDM models the

distribution of superclusters is much less regular than in DPS and especially in DPP model.

These geometric properties are well expressed through the correlation functions and power

spectra of respective models (for the geometric interpretation of correlation functions see

E97b, E97c). Thus we may hope that the correlation function of real rich superclusters can

be used to test the distribution of the whole matter in the Universe. In particular, we note

that the correlation function is very sensitive to the shape of the power spectrum around the

maximum. The correlation function is oscillating only in the case when the power spectrum

has a sharp peak at the maximum, otherwise it approaches the zero level on large scales.

A similar conclusion has been obtained by Suhhonenko and Gramann (1998) using

high-resolution N-body simulations and analytical calculations based on the Press-Schechter

(1974) algorithm.

5.2. Observed correlation functions

Now we compare the correlation function for clusters in very rich superclusters as derived

from Abell-ACO clusters with that from APM clusters (E97b, E99c). As can be seen in the

left panel of Figure 5, our data show clearly that the correlation function of clusters in

very rich superclusters has a well-defined secondary maximum for both cluster samples.

The secondary maximum of the cluster correlation function is due to the correlation of

clusters across large voids. The mutual separation of very rich superclusters of the APM
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cluster sample is rather large. This separation determines the location of the secondary

maximum of the correlation function, which is 185 h−1 Mpc, determined both from the APM

cluster sample, and from the Abell-ACO cluster sample in the same volume. The secondary

maximum of the correlation function for the whole Abell-ACO cluster sample is located at

a separation of 140 h−1 Mpc. The amplitude of the secondary maximum for APM clusters

is exaggerated since the sample is small. In a small sample the number of rich superclusters

is small (APM sample contains only 3 very rich superclusters); the secondary maximum of

the correlation function is given by the mutual separation of these few superclusters. In a

large sample there are many rich superclusters, all of them have different separations. Local

secondary maxima of the correlation function (found in small subvolumes) cancel each other

partly out, and the secondary maximum of the mean correlation function calculated for the

whole volume has a much lower amplitude than maxima in smaller subvolumes.

Fig. 5.— The correlation functions of galaxies and clusters of galaxies. The left panel gives

these functions for clusters of galaxies located in very rich superclusters of Abell-ACO and

APM samples. The right panel shows the correlation functions of galaxies in the APM 3-D

“1–in–20” sample (Loveday et al. 1995) and LCRS sample (Tucker et al. 1997); Lov-me,

Lov-ml, Lov-bl denote medium-bright early type, medium-bright late type, and bright late

type galaxies from Figure 6 of Loveday et al. . For comparison we show the correlation

functions calculated by Fourier transformation of power spectra, PHD(k) (bold solid line),

and PMD(k) (bold dashed line). All galaxy correlation functions are enhanced in amplitude

to match the correlation functions for clusters in rich superclusters.
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The location of the secondary maximum of the correlation function is closely connected

with the position of the maximum of the power spectrum (E97b, E97c). As both the spectrum

and the correlation function of the APM cluster sample are determined from a much smaller
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volume than those for the Abell-ACO sample, we have to conclude that the differences in

the power spectrum and the correlation function derived for these two cluster samples are

due to cosmic fluctuations.

In Figure 5 we also give the correlation functions calculated from the observed power

spectrum of matter, PHD(k), as adopted in the previous Section, as well as from the spectrum

PMD(k) which has a flat maximum. These functions were also matched in amplitude to that

of the cluster correlation function in rich superclusters. The correlation function calculated

from the power spectrum PHD(k) has a zero crossing at 60 h−1 Mpc, not far from the

zero crossing of the correlation function of clusters in Abell-ACO (60 h−1 Mpc) and APM

(70 h−1 Mpc) rich superclusters. On smaller separations its amplitude is lower than the

observed cluster correlation amplitude. The correlation function derived from the power

spectrum PMD(k) has a much lower zero crossing (about 45 h−1 Mpc) and amplitude on

small scales.

Cluster correlation functions can be compared with galaxy correlation functions derived

by Loveday et al. (1995) for the APM “1–in–20” redshift survey and for LCRS galaxies

(Tucker et al. 1997), as indicated in the right panel of Figure 5. Unfortunately, Loveday

et al. calculated the galaxy correlation functions only for r ≤ 60 h−1 Mpc, so that the

presence or absence of a secondary maximum of the galaxy correlation function cannot be

established. For the present comparison the position of zero crossing is important, as it does

not depend on the relative bias factor. For various subsamples of the APM galaxy sample

the zero crossing lies between 50 and 55 h−1 Mpc, a bit less than for the correlation function

derived from the power spectrum PHD(k) (60 h−1 Mpc). The correlation function of galaxies

in the LCRS galaxies (Tucker et al. 1997) has a zero crossing (32 h−1 Mpc) not far from that

of the correlation function derived from the power spectrum PMD(k) (45 h−1 Mpc). Note

also that the correlation function of LCRS galaxies is oscillating as the cluster correlation

function. The period of oscillations is approximately 100 h−1 Mpc, as expected from the

position of the maximum of the power spectrum of LCRS galaxies, and from the separation

of rich galaxy filaments in LCRS slices. We see that correlation functions are in satisfactory

agreement with power spectra.

We conclude that the correlation function test reinforces our findings on the basis of the

power spectra. There exist differences in clustering properties of populations in the nearby

Universe. One population is characteristic for rich superclusters, and the other for poorer

ones. The former population has a power spectrum with a sharp peak and a correlation

function with zero crossing near 60 h−1 Mpc, the latter population has a flatter power

spectrum and a zero crossing of the correlation function near 40 h−1 Mpc. On the other

hand, all power spectra of samples of the MD population have one or other problem – either
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with limitations inherent to the dataset itself or with the appropriateness of the data analysis.

Thus, the differences between our adopted mean power spectra of high and medium density

regions could be partly attributed to these problems.

6. Conclusions

In this paper our goal is to determine the mean power spectrum of galaxies in real space

in a large representative volume. Our principal assumption is that a fair sample has a power

spectrum, i.e. a mean spectrum characteristic for a population which includes all galaxies

including faint dwarf galaxies.

We have used observed power spectra determined from deep galaxy and cluster samples.

In analyzing these samples we have found two distinct populations. The first population

is characteristic of volumes containing superclusters of a wide variety of richness classes;

samples which can be identified with this first population include the Abell-ACO and the

APM cluster catalogs, the 3-D redshift survey of APM galaxies, and the SSRS+CfA2 130

Mpc galaxy catalog. The second population is characteristic of volumes which – due to

smaller volume and/or unfortunate survey geometry – lack the rarer, richer superclusters;

this “medium-rich” population is represented by the LCRS (whose slice geometry seems

to be anti-correlated with the positions of the richest superclusters) and the IRAS galaxy

sample (since IRAS galaxies tend to avoid high-density environments).

We have found mean power spectra for these populations. Mean power spectra were

reduced to correct for redshift distortions due to bulk motions. On medium and small scales

the power spectra of the two populations are identical. This is because on these scales, the

mean power spectrum is adopted from 3-dimensional reconstruction of the 2-dimensional

distribution of APM galaxies, which is free of redshift distortions and, due to the very large

size of the sample, has a small cosmic scatter.

On large scales, the mean power spectrum which we adopted for the high-density pop-

ulation, PHD(k), was derived from observed power spectra in redshift space for cluster and

galaxy samples listed above. Redshift space spectra are reduced to real space and corrected

for the relative bias. On these scales redshift distortions due to peculiar motions of galax-

ies in clusters and groups are small and can be ignored. The mean power spectrum has

a fairly sharp maximum at k = 0.05 ± 0.01 h Mpc−1, and a half-width half-maximum of

HWHM = 0.19± 0.05 dex; on smaller scales, it exhibits an almost exact power law of index

n = −1.9. Clusters of galaxies have the largest weight in the determination of this power

spectrum.
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The power spectrum we find for medium-density regions, PMD(k), has a flatter maximum

with HWHM = 0.42 ± 0.10 dex.

We have argued that clusters of galaxies adequately trace the true mass distribution

in the Universe, so that the cluster data based power spectrum of galaxies can probably be

considered as the power spectrum of a fair sample of the Universe.
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Table 2: Power spectra

log k log Pgal ǫ n log Plin n

-1.54 4.2350 .0891 .75 3.9850 .75

-1.52 4.2425 .0853 .37 3.9925 .37

-1.50 4.2553 .0832 .64 4.0053 .64

-1.48 4.2710 .0806 .79 4.0210 .79

-1.46 4.2867 .0773 .78 4.0367 .78

-1.44 4.3000 .0732 .66 4.0500 .66

-1.42 4.3104 .0685 .52 4.0604 .52

-1.40 4.3189 .0637 .43 4.0689 .43

-1.38 4.3270 .0593 .40 4.0770 .40

-1.36 4.3356 .0554 .43 4.0856 .43

-1.34 4.3447 .0521 .46 4.0947 .46

-1.32 4.3534 .0498 .44 4.1034 .44

-1.30 4.3614 .0482 .40 4.1114 .40

-1.28 4.3549 .0412 -.33 4.1049 -.33

-1.26 4.3332 .0401 -1.09 4.0720 -.95

-1.24 4.2996 .0393 -1.68 4.0437 -1.41

-1.22 4.2604 .0384 -1.96 4.0099 -1.69

-1.20 4.2229 .0375 -1.87 3.9725 -1.87

-1.18 4.1856 .0366 -1.87 3.9351 -1.87

-1.16 4.1481 .0361 -1.87 3.8978 -1.87

-1.14 4.1107 .0358 -1.87 3.8604 -1.87

-1.12 4.0733 .0360 -1.87 3.8230 -1.87

-1.10 4.0359 .0366 -1.87 3.7856 -1.87

-1.08 3.9985 .0375 -1.87 3.7483 -1.86

-1.06 3.9611 .0383 -1.87 3.7109 -1.87

-1.04 3.9237 .0384 -1.87 3.6735 -1.87

-1.02 3.8863 .0426 -1.87 3.6361 -1.87

-1.00 3.8489 .0421 -1.87 3.5988 -1.87

-.98 3.8115 .0422 -1.87 3.5614 -1.87

-.96 3.7741 .0421 -1.87 3.5240 -1.87

-.94 3.7367 .0416 -1.87 3.4866 -1.87

-.92 3.6993 .0413 -1.87 3.4493 -1.86

-.90 3.6632 .0815 -1.81 3.4132 -1.81

-.88 3.6262 .0785 -1.85 3.3762 -1.85

-.86 3.5887 .0752 -1.87 3.3387 -1.87

-.84 3.5509 .0716 -1.89 3.3009 -1.89

-.82 3.5128 .0678 -1.90 3.2628 -1.91

-.80 3.4748 .0640 -1.90 3.2248 -1.90

-.78 3.4369 .0601 -1.89 3.1711 -2.69

-.76 3.3994 .0562 -1.87 3.1221 -2.45

-.74 3.3625 .0525 -1.85 3.0810 -2.05

-.72 3.3263 .0489 -1.81 3.0461 -1.75

-.70 3.2909 .0456 -1.77 3.0116 -1.72

log k log Pgal ǫ n log Plin n

-.68 3.2566 .0425 -1.72 2.9709 -2.03

-.66 3.2232 .0397 -1.67 2.9217 -2.46

-.64 3.1906 .0373 -1.63 2.8675 -2.71

-.62 3.1588 .0351 -1.59 2.8160 -2.58

-.60 3.1277 .0333 -1.56 2.7720 -2.20

-.58 3.0972 .0320 -1.53 2.7328 -1.96

-.56 3.0672 .0310 -1.50 2.6904 -2.12

-.54 3.0376 .0304 -1.48 2.6412 -2.46

-.52 3.0085 .0301 -1.45 2.5893 -2.59

-.50 2.9798 .0302 -1.44 2.5415 -2.39

-.48 2.9515 .0305 -1.42 2.4977 -2.19

-.46 2.9234 .0311 -1.40 2.4519 -2.29

-.44 2.8956 .0319 -1.39 2.4025 -2.47

-.42 2.8681 .0327 -1.38 2.3540 -2.43

-.40 2.8407 .0337 -1.37 2.3060 -2.40

-.38 2.8136 .0348 -1.35 2.2578 -2.41

-.36 2.7868 .0359 -1.34 2.2096 -2.41

-.34 2.7602 .0370 -1.33 2.1615 -2.41

-.32 2.7339 .0381 -1.31 2.1132 -2.41

-.30 2.7079 .0392 -1.30 2.0645 -2.43

-.28 2.6822 .0402 -1.28 2.0156 -2.45

-.26 2.6569 .0412 -1.27 1.9667 -2.45

-.24 2.6319 .0421 -1.25 1.9178 -2.44

-.22 2.6072 .0429 -1.23 1.8689 -2.45

-.20 2.5829 .0437 -1.22 1.8199 -2.45

-.18 2.5589 .0444 -1.20 1.7708 -2.45

-.16 2.5352 .0450 -1.18 1.7216 -2.46

-.14 2.5119 .0456 -1.17 1.6724 -2.46

-.12 2.4889 .0462 -1.15 1.6231 -2.46

-.10 2.4660 .0467 -1.14 1.5739 -2.46

-.08 2.4432 .0471 -1.14 1.5245 -2.47

-.06 2.4203 .0474 -1.14 1.4752 -2.47

-.04 2.3974 .0476 -1.15 1.4258 -2.47

-.02 2.3742 .0478 -1.16 1.3764 -2.47

.00 2.3507 .0478 -1.17 1.3270 -2.47

.02 2.3268 .0477 -1.19 1.2776 -2.47

.04 2.3027 .0475 -1.21 1.2283 -2.47

.06 2.2783 .0472 -1.22 1.1789 -2.47

.08 2.2536 .0468 -1.23 1.1295 -2.47

.10 2.2287 .0463 -1.25 1.0802 -2.47

.12 2.2035 .0458 -1.26 1.0308 -2.47

.14 2.1781 .0451 -1.27 .9815 -2.47

.16 2.1524 .0443 -1.28 .9322 -2.46

.18 2.1264 .0435 -1.30 .8830 -2.46

.20 2.1001 .0426 -1.31 .8337 -2.46
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log k log Pgal ǫ n log Plin n

.22 2.0735 .0417 -1.33 .7845 -2.46

.24 2.0464 .0407 -1.35 .7352 -2.46

.26 2.0189 .0397 -1.38 .6860 -2.46

.28 1.9909 .0387 -1.40 .6368 -2.46

.30 1.9625 .0377 -1.42 .5876 -2.46

.32 1.9339 .0367 -1.43 .5384 -2.46

.34 1.9050 .0357 -1.44 .4891 -2.46

.36 1.8760 .0347 -1.45 .4399 -2.46

.38 1.8470 .0338 -1.45 .3907 -2.46

.40 1.8180 .0329 -1.45 .3414 -2.46

.42 1.7891 .0320 -1.45 .2922 -2.46

.44 1.7603 .0312 -1.44 .2430 -2.46

.46 1.7316 .0304 -1.43 .1938 -2.46

.48 1.7031 .0297 -1.43 .1446 -2.46

.50 1.6747 .0289 -1.42 .0954 -2.46

.52 1.6465 .0283 -1.41 .0462 -2.46

.54 1.6184 .0276 -1.40 -.0030 -2.46

.56 1.5904 .0269 -1.40 -.0522 -2.46

.58 1.5625 .0263 -1.39 -.1014 -2.46

.60 1.5346 .0257 -1.40 -.1507 -2.46

.62 1.5066 .0251 -1.40 -.2000 -2.47

.64 1.4785 .0246 -1.41 -.2494 -2.47

.66 1.4501 .0240 -1.42 -.2987 -2.47

.68 1.4214 .0235 -1.44 -.3481 -2.47

.70 1.3923 .0231 -1.45 -.3976 -2.47

.72 1.3632 .0226 -1.46 -.4470 -2.47

.74 1.3342 .0222 -1.45 -.4964 -2.47

.76 1.3054 .0217 -1.44 -.5459 -2.47

.78 1.2771 .0214 -1.42 -.5953 -2.47

.80 1.2493 .0210 -1.39 -.6449 -2.48

.82 1.2223 .0207 -1.35 -.6945 -2.48

.84 1.1959 .0204 -1.32 -.7442 -2.49

.86 1.1694 .0202 -1.33 -.7938 -2.48

.88 1.1422 .0200 -1.36 -.8433 -2.47

.90 1.1135 .0197 -1.43 -.8934 -2.51

.92 1.0829 .0195 -1.53 -.9444 -2.55

.94 1.0496 .0192 -1.67 -.9935 -2.46

.96 1.0130 .0189 -1.83 -1.0391 -2.28

.98 .9744 .0186 -1.93 -1.0895 -2.52

1.00 .9363 .0183 -1.91 -1.1544 -3.24


